Search results for " variety"
showing 10 items of 103 documents
Infinitesimal deformations of double covers of smooth algebraic varieties
2003
The goal of this paper is to give a method to compute the space of infinitesimal deformations of a double cover of a smooth algebraic variety. The space of all infinitesimal deformations has a representation as a direct sum of two subspaces. One is isomorphic to the space of simultaneous deformations of the branch locus and the base of the double covering. The second summand is the subspace of deformations of the double covering which induce trivial deformations of the branch divisor. The main result of the paper is a description of the effect of imposing singularities in the branch locus. As a special case we study deformations of Calabi--Yau threefolds which are non--singular models of do…
Algebraicity of analytic maps to a hyperbolic variety
2018
Let $X$ be an algebraic variety over $\mathbb{C}$. We say that $X$ is Borel hyperbolic if, for every finite type reduced scheme $S$ over $\mathbb{C}$, every holomorphic map $S^{an}\to X^{an}$ is algebraic. We use a transcendental specialization technique to prove that $X$ is Borel hyperbolic if and only if, for every smooth affine curve $C$ over $\mathbb{C}$, every holomorphic map $C^{an}\to X^{an}$ is algebraic. We use the latter result to prove that Borel hyperbolicity shares many common features with other notions of hyperbolicity such as Kobayashi hyperbolicity.
A closer look at mirrors and quotients of Calabi-Yau threefolds
2016
Let X be the toric variety (P1)4 associated with its four-dimensional polytope 1. Denote by X˜ the resolution of the singular Fano variety Xo associated with the dual polytope 1o. Generically, anticanonical sections Y of X and anticanonical sections Y˜ of X˜ are mirror partners in the sense of Batyrev. Our main result is the following: the Hodge-theoretic mirror of the quotient Z associated to a maximal admissible pair (Y, G) in X is not a quotient Z˜ associated to an admissible pair in X˜ . Nevertheless, it is possible to construct a mirror orbifold for Z by means of a quotient of a suitable Y˜. Its crepant resolution is a Calabi-Yau threefold with Hodge numbers (8, 4). Instead, if we star…
Homological Projective Duality for Determinantal Varieties
2016
In this paper we prove Homological Projective Duality for crepant categorical resolutions of several classes of linear determinantal varieties. By this we mean varieties that are cut out by the minors of a given rank of a n x m matrix of linear forms on a given projective space. As applications, we obtain pairs of derived-equivalent Calabi-Yau manifolds, and address a question by A. Bondal asking whether the derived category of any smooth projective variety can be fully faithfully embedded in the derived category of a smooth Fano variety. Moreover we discuss the relation between rationality and categorical representability in codimension two for determinantal varieties.
Rivestimenti di varietà algebriche contenuti in fibrati di piani proiettivi
ON AUTOMORPHISMS OF GENERALIZED ALGEBRAIC-GEOMETRY CODES.
2007
Abstract We consider a class of generalized algebraic-geometry codes based on places of the same degree of a fixed algebraic function field over a finite field F / F q . We study automorphisms of such codes which are associated with automorphisms of F / F q .
Point counting on Picard curves in large characteristic
2005
We present an algorithm for computing the cardinality of the Jacobian of a random Picard curve over a finite field. If the underlying field is a prime field Fp, the algorithm has complexity O(p).
Smooth structures on algebraic surfaces with cyclic fundamental group
1988
Algebraic time-reversal operation
1999
International audience; We analyze the implementation of the time-reversal (TR) transformation in the algebraic approach to tetrahedral local molecules through the chain of groups U(5) U(4) K(4) = A(4) ^ S(4) S(4) Td. We determine the general form of the TR operation using a purely algebraic realization, based exclusively on the requirement that the irreducible representations must not be changed under the time inversion symmetry. As a result we can determine the TR behavior of purely algebraic operators.